Portfolio Optimization & Stochastic Volatility Asymptotics

نویسندگان

  • Jean-Pierre Fouque
  • Ronnie Sircar
  • Thaleia Zariphopoulou
چکیده

We study the Merton portfolio optimization problem in the presence of stochastic volatility using asymptotic approximations when the volatility process is characterized by its time scales of fluctuation. This approach is tractable because it treats the incomplete markets problem as a perturbation around the complete market constant volatility problem for the value function, which is well-understood. When volatility is fast mean-reverting, this is a singular perturbation problem for a nonlinear Hamilton-JacobiBellman PDE, while when volatility is slowly varying, it is a regular perturbation. These analyses can be combined for multifactor multiscale stochastic volatility models. The asymptotics shares remarkable similarities with the linear option pricing problem, which follows from some new properties of the Merton risk-tolerance function. We give examples in the family of mixture of power utilities and also we use our asymptotic analysis to suggest a “practical” strategy which does not require tracking the fast-moving volatility. In this paper, we present formal derivations of asymptotic approximations, and we provide a convergence proof in the case of power utility and single factor stochastic volatility. We assess our approximation in a particular case where there is an explicit solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order multiscale stochastic volatility asymptotics: stochastic terminal layer analysis and calibration

Multiscale stochastic volatility models have been developed as an efficient way to capture the principle effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book Fouque, Papanicolaou, Sircar and Sølna (2011, CUP) analyzes models in which the volatility of the underlying is driven by two diffusions – one fast mean-reverting and one slow-varying, an...

متن کامل

Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration

Multiscale stochastic volatility models have been developed as an efficient way to capture the principle effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book Fouque, Papanicolaou, Sircar and Sølna (2011, CUP) analyzes models in which the volatility of the underlying is driven by two diffusions – one fast mean-reverting and one slow-varying, an...

متن کامل

A Monte-Carlo method for portfolio optimization under partially observed stochastic volatility

In this paper we implement an algorithm for the optimal selection of a portfolio of stock and risk-free asset under the stochastic volatility (SV) model with discrete observation and trading. The SV model extends the classical Black-Scholes model by allowing the noise intensity (volatility) to be random. The main assumption is that the portfolio manager has discrete access to the continuous-tim...

متن کامل

Optimal Trading with Predictable Return and Stochastic Volatility

We consider a class of dynamic portfolio optimization problems that allow for models of return predictability, transaction costs, and stochastic volatility. Determining the dynamic optimal portfolio in this general setting is almost always intractable. We propose a multiscale asymptotic expansion when the volatility process is characterized by its time scales of fluctuation. The analysis of the...

متن کامل

Variance, Risk and Median Preserving Spreads∗

We say that one random variable dominates the other in the stochastic order if the covariance of any two monotone increasing functions of the first variable is larger than the covariance of the same functions of the second variable. We completely characterize this stochastic order, give strong sufficient conditions and numerous examples with concrete distributions. We show that this order is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013